AP Calculus – The Chain Rule and How to Use It
The Chain Rule is a handy tool for dealing with composite functions, making it easier to differentiate more complex functions. For instance, some functions can be differentiated straightforwardly without the Chain Rule, while others are best tackled using it.
Without the Chain Rule | With the Chain Rule |
---|---|
\(y=x^3-2x^2+x+5\) | \(y=\sqrt[3]{2x^2+x-1}\) |
\(y=\sin x+4x\) | \(y=\sin\left(\cos x\right)\) |
\(y=\sec x+\tan x\) | \(y=\left(\sin\left(2x+1\right)\right)^3\) |
If \(y=f\left(u\right)\) is a differentiable function of \(u\) and \(u=g\left(x\right)\) is a differentiable function of \(x\), then \(y=f\left(g\left(x\right)\right)\) is a differentiable function of \(x\) and
\(\displaystyle\frac{dy}{dx}=\frac{dy}{du}\cdot \frac{du}{dx}\)
or
\(\displaystyle\frac{d}{dx}\left[f\left(g\left(x\right)\right)\right]=f’\left(g\left(x\right)\right)\cdot g’\left(x\right)\)
The Chain Rule
Example 1
Find \(\displaystyle F’\left(x\right)\) if \(F\left(x\right)=\sqrt{x^2+1}\).
Solution
Let \(u=x^2+1\) and \(y=\sqrt{u}\):
\(F’\left(x\right)=\displaystyle\frac{dy}{du}\cdot\frac{du}{dx}=\frac{1}{2\sqrt{u}}\cdot 2x= \frac{1}{2\sqrt{x^2+1}}\cdot 2x=\frac{x}{\sqrt{x^2+1}}\)
Example 2
Differentiate \(y=\sin\left(x^2\right)\)
Solution
Let \(u=x^2\) and \(y=\sin u\):
\(\displaystyle\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}=\cos u\cdot 2x= \cos\left(x^2\right)\cdot 2x=2x\cos\left(x^2\right)\)
Example 3
Differentiate \(y=\sin^2x\)
Solution
Let \(u=\sin x\) and \(y=u^2\):
\(\begin{array}{rcl}\displaystyle\frac{dy}{dx}&=&\displaystyle\frac{dy}{du}\cdot\frac{du}{dx} \\ \displaystyle &=& 2u\cdot \cos x \\ \displaystyle &=&2\sin x\cos x \\ &=&\sin 2x \end{array}\)
Example 4
Differentiate \(y=\left(2x^5+2\right)^{50}\)
Solution
Let \(u=2x^5+2\) and \(y=u^{50}\):
\(\begin{array}{rcl}\displaystyle\frac{dy}{dx}&=&\displaystyle\frac{dy}{du}\cdot\frac{du}{dx} \\ &=& \displaystyle 50u^{49}\cdot 2\cdot 5x^4 \\ &=& \displaystyle 50\left(2x^5+2\right)^{49}\cdot 10x^4 \\ &=& \displaystyle 500x^4\left(2x^5+2\right)^{49}\end{array}\)
Example 5
Differentiate \(y=\left(2x^5+2\right)^{50}\)
Solution
Let \(u=2x^5+2\) and \(y=u^{50}\):
\(\begin{array}{rcl}\displaystyle\frac{dy}{dx}&=&\displaystyle\frac{dy}{du}\cdot\frac{du}{dx} \\ &=& \displaystyle 50u^{49}\cdot 2\cdot 5x^4 \\ &=& \displaystyle 50\left(2x^5+2\right)^{49}\cdot 10x^4 \\ &=& \displaystyle 500x^4\left(2x^5+2\right)^{49}\end{array}\)
Example 6
Find the derivative of the function \(f\left(x\right)=\displaystyle\left(\frac{x-1}{3x+2}\right)^8\)
Solution
Let \(u=\displaystyle\frac{x-1}{3x+2}\) and \(y=u^{8}\):
\(\begin{array}{rcl} \displaystyle\frac{dy}{dx}&=&\displaystyle\frac{dy}{du}\cdot\frac{du}{dx} \\ &=& 8u^7\cdot \displaystyle\frac{\left(x-1\right)’\cdot\left(3x+2\right)-\left(x-1\right)\cdot\left(3x+2\right)’}{\left(3x+2\right)^2} \\ &=& 8u^7\cdot\displaystyle\frac{3x+2-3\left(x-1\right)}{\left(3x+2\right)^2} \\ &=& 8u^7\cdot\displaystyle\frac{5}{\left(3x+2\right)^2} \\ &=& 40\displaystyle\cdot \left(\frac{x-1}{3x+2}\right)^7\cdot \frac{1}{\left(3x+2\right)^2} \\ &=& \displaystyle\frac{40\left(x-1\right)^7}{\left(3x+2\right)^9} \end{array}\)
Example 7
Find the derivative of the function \(f\left(x\right)=\displaystyle e^{\sin x}\).
Solution
Let \(u=\sin x\) and \(y=e^u\):
\(\begin{array}{rcl}\displaystyle\frac{dy}{dx}&=&\displaystyle\frac{dy}{du}\cdot\frac{du}{dx} \\ &=& e^u\cdot \cos x \\ &=& e^{\sin x}\cdot \cos x \end{array}\)
Example 8
Find the derivative of the function \(f\left(x\right)=\displaystyle \sin\left(\cos\left(\tan x\right)\right)\).
Solution
\(\begin{array}{rcl}\displaystyle\frac{dy}{dx}&=& \cos\left(\cos\left(\tan x\right)\right)\cdot \displaystyle\frac{d}{dx}\left(\tan x\right) \\ &=& \cos\left(\cos\left(\tan x\right)\right)\left(-\sin\left(\tan x\right)\right)\cdot \displaystyle\frac{d}{dx}\left(\tan x\right) \\ &=& -\cos\left(\cos\left(\tan x\right)\right)\sin\left(\tan x\right)\sec^2x \end{array}\)
Example 9
Differentiate \(y=\displaystyle e^{\sec 3\theta}\).
Solution
\(\begin{array}{rcl}\displaystyle\frac{dy}{d\theta} &=& e^{\sec 3\theta}\cdot \displaystyle\frac{d}{d\theta}\left(\sec 3\theta\right) \\ &=& e^{\sec 3\theta}\cdot \sec 3\theta\tan 3\theta\cdot\displaystyle\frac{d}{d\theta}\left(3\theta\right) \\ &=& 3e^{\sec 3\theta}\sec 3\theta\tan 3\theta \end{array}\)
Leave a Reply